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1. INTRODUCTION

The parametric adjustment model expresses each of the observables in terms
of parameters, where the structure linking the two groups of variables is, in
general, nonlinear. The number of observables 1s denoted by n and the number of
parameters by u, where n must be greater than u for an adjustment to take place.

The adjustment model is written as

L? - r(x% ,

where L? and x® are the sets {(column vectors) of adjusted observations and
adjusted parameters, respectively. This study addresses the resolution of a
nonlinear model through an isomorphic geometrical setup with tensor structure
and natation. Such efforts date back to [Blaha, 1984), which treats a linear or
linearized adjustment model. An initial analysis of a nonlinear model can be

found in [Blaha, 1987]}.

In a standard adjustment approach, a nonlinear adjustment model is subject
to the Taylor series expansion based on an Initial set of parametric values, Xo
The terms in the second and higher powers of the parametric corrections are
neglected, resulting in the familiar (linearized) observation equations. In

matrix notation, the latter are expressed by
V=4aX + L,

where A Is the design matrix, X=Xa-Xo is the column vector of parametric

b is the column vector of residuals, and L=L°—Lb is the

corrections, V=La-L
column vector of constant terms, with L°=P(Xo) containing the values of
observables consistent with the initial set of parameters and Lb containing the
actual observations. The linearlized model i3 subjected to the least-squares

criterion

VT PV = minimum ,

where P is the weight matrix of observations. This criterion leads to the

formation of the familiar normal equations.

If the original adjustment model is nonlinear, the resolution of the
ltnearized model does not yield the final answers. The process 1s usually
repeated with new, updated parameters and the corresponding changes in A and L.

However, the variance-covariance matrix of observations, L, as well as the
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welght matrix P, adopted as P=2-1, are independent of the parameters. Thus, the
matrix of normal equations, N=ATPA, changes only due to A, and the column
vector representing the right-hand side of normal equations, U=-ATPL. changes
only due to A and L. The computation of the updated parametric values through a
new X requires the formation and the inversion of a new N in each iteration, or
a mathematically equivalent procedure. When X becomes sufficiently close to
zero the iterative process is terminated. As its by-product, the latest matrix

N_1 is adopted as the variance-covariance matrix of adjusted parameters.

The functional relationship between the observables and the parameters
lends itself to a geometrical interpretation and treatment involving spaces and
surfaces generalized to higher dimensions. In particular, the parametric

adjustment model symbolized by
X = xr(ua) , r=1,2,...,n, a=1,2,...,u

can be linked to the Gauss form of a surface in relation to the surrounding
space, where x* are the space coordinates and u® are the surface coordinates.
The Gauss form of a two-dimensional surface (u=2) embedded in a three-
dimensional flat space (n=3) is described, together with two other forms, in
Chapter 6 of [Hotine, 1969]. In [Blaha, 1984], both the n-dimensional
"observational” space and the u-dimensional "model” surface were considered
flat. The latter was thus in reality a hyperplane. Although the model surface
{3 now intrinsically a curved space, the surrounding space will be seen to be

again flat.

In general, a flat space can be described via Cartesian coordinates. 1In a
Cartesian coordinate system, a given point is depicted by a set of coordinates
xr, r=1,2,...,n, which can be interpreted as its position vector expressed by
contravariant components, pr=xr. Considered as a tensor, and thus as a point
function, pr is associated with this given point (and not, for example, with the
origin). Accordingly, if the space coordinates are Cartesian, the above model
equation xr=xr(ua) will express a family of position vectors associated with the
model surface. Any of these position vectors could be freely parallel-
transported to any location in space, e.g. to the surface point P described by
xg=xr(uz), and could eventually give rise to tensor equations there.

Although derived {n Cartesian coordinates, such equations would be valid in any

coordinates applicable to a flat space.




In an i{mportant extension of the above discussion, we state that {f

f

g constant ,

sr

where €y is the space metric tensor, xr(ua) can again be interpreted as a
family of position vectors assoclated with the model surface embedded in a flat
space. Thus, although the space coordinate system cannot be general for such an
interpretation to hold true, it is not required to be Cartesian. The position
vectors can again be parallel-transported to the point P or any other location
without changes in their components {(contravariant as well as covarlant), which
nas bean referred to as "free" parallel transport. This stems from the fact
that such changes are expressible in terms of the Christoffel symbols formed

through partial derivatives of the space metric tensor.

Among all possible space coordinate systems, only those characterized by a
constant metric tensor will be relevant to our development. Accordingly, xr(ua)
will be interpreted as a family of position vectors associated with the model
surface, any of which can be freely parallel-transported to a chosen location.
The foregoing is meant to elucidate the isomorphism of adjustments and geometry.
At the same time, it has led us to appreciate the qualitative difference between
the two contexts. In the first context, the model equation xr=xr(ua) provides
restrictions on adjusted observations of a general kind, where all the
quantities and relationships can be completely void of any geometrical meaning.
In the second context, {t provides restrictions on position vectors in space,
which is a purely geometrical phenomenon. However, studying one scientific
discipline In terms of another, even seemingly disparate, may lead to unforeseen

benefits and a deeper urderstanding of both.




2. GEOMETRICAL SETUP

In denoting the n observables by xr. r=1,2,...,n, and the u unknown
parameters by ua, a=1,2,...,u, we can represent a nonlinear parametric

ad justment model by

8

r r

xF = xF(u® = xF ¢ A au” + (1/2) a® au® au
o] [+ 4 a

8

v (1/86) °;ﬁr au® awf au’ 4 ..., (1a)

Aua = ua - u: , (1b)

where u: represents an initial set of parameters and xz=xr(ug) represents

the observables consistent with this set. Throughout this study, the lower-case
Roman indices range from 1 to n, and the lower-case Greek indices range from 1
to u. Tensor symbolism implies the summation convention over the dummy

(repeating) indices.

In the geometrical context, the first equality in (la) represents the Gauss
form of a u-dimensional surlace embedded in an n-dimensional space. The surface
is endowed with the coordinate system (ua), a=1,2,...,u and is referred to as
the model surface, and the space is endowed with the coordinate system (xr}.
r=1,2,..., n, and 1is referred to as the observational space. The second equality
ir (1a) is the Taylor series expansion of x" from the "initial" point P lying in
the model surface, whose model-surface coordinates are u: and whose
observational-space coordinates are x°. The notation identifying the partial
derivatives at P, such as axr/auaaA;. aaxr/auaauﬁsﬂzﬁ, etc., is self-
evident. The actual observations can be thought of as describing the point Q in
the observational space, which, due to measuiing ¢rruvrs, doez not lie in the
known model surface. The task at hand consists in determining, from the

observed point Q, a model-surface point satisfying the least-squares criterion.

In the adjustment context, the variance-covariance and the weight matrices
of observations depend on the guality of measurements. They are independent of
the adjustment model, of the initial set of parameters, of the outcome of
observations, etc. Thus, for a given observational mode they are constant. In
the "traditional” identification of [Blaha, 1984], varlance-covariance matrices
correspond to associated metric tensors, and weight matrices correspond to

metric tensors. Accordingly. we represent the varlance-covariance matrix of




observations by the observational-space associated metric tensor grs, and the
weight matrix of observations by the observational-space metric tensor gsr' and
state that both tensors are Independent of the form of the model surface, of the

initial point P, of the observed point Q, etc., leading to the simplification

gsr = cohstant . (2)

One could also attribute the tensors grs and gsr to the point Q@ and state that
the geometrical setup must account for Q located anywhere in the observational

space. In turn, (2) implies that the observational space must be flat.

[f the set 6kr denotes the coordinate differences between the observed
polnt § and the desired model -surface point denoted P, it corresponds to the

negative resfduals, and the least-squares criterlion corresponds to

5s° - 5x° g, 6x" - minfmun . (3)
Since (2} allows us to make appeal to Cartesian coordinates, we can consider the
quantities such as 5§r. Axr, etc., whether {nfinitesimal or finite, to be sets
of coordinate differences as well as contravariant vectors in the abservational
space, where they can be freely parallel-transported to any location. Moreover,
the quadratic form (3) represents the square of the distance between Q and P.
Therefore. the desired "least-squares” polnt P must be the foot-point of the
straight line dropped orthogonally from Q onto the model! surface. This property
is schematically fllustrated in Fig. 1. where the vector ﬁQ. i.e., the
geometrical object symbolized by &x, ls drawn perpendicular to the model
surface at P. We note that if any other adjustment condition were used in
liru of the least -squares criterion, the minimum-distance property (3) would not
exist and the geometric-tensorial treatment oi the udjustment thenrv would

probably be much more complex {f not impcssible.

The model-surface coordinates of the least-squares point P, denoted ua.
correspond to the adjusted parameters. and its observational-space coordinates,
denoted x©. correspond to the adjusted observations. {Although this deslignation
i{s more restrictive than the notation u® and x" used in 1a.b, it need not cause
any confusion.) Furthermore, the surface assoclated metric tensor at [3
corresponds to the variance-covariance matrix of adjustcd parameters, and the
"necessary” version of the space associated metric tensor at P corresponds to

the singular varianco-covariance matrix of adjusted observations. Such
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Fig. 1

Symbolic representation of a nonlinear parametric least-squares adjustment.
A one-dimensional model surface is embedded in a two-dimensional observational

space: the parentheses pertain to the solution of the model linearized at P.




correspondences, as well as the definition of "necessary” tensors, were
presented in Sections 2.2 and 4.2 of [Blaha, 1984]. In the same vein, the
surface metric tensor at P corresponds to the weight matrix of adjusted
parameters, and the "necessary" version of the space metric tensor at P

corresponds to the singular weight matrix of adjusted observations.

These notions confirm the variance-covariance propagation law and introduce
a "weight propagation law", and they can be extended to functions of adjusted
parameters as well as to functions of adjusted observations. In [Blaha, 1984],
hswecver, they were demonstrated only for linear models. In nonlinear models the
above tiasors, expressible by means of orthonormal vectors tangent to the model
surface at P, could be said to describe “tangential”, or first-order,

properties of least-squares estilaates.




3. SOLUTION

3.1 General Development

The adjustment theory assumes that the known values of the initial set of
parameters, represented here by ug. are close to the final values represented
by u*. Furthermore, the values of the residuals are also assumed to be small.
For the needs of the current development. we stipulate that quantities will be
considered "small", or first-order, if they behave like differential quantities,
in the sense that a product of two first-order quantities will result in a
quantity smaller by an order of magnitude. The latter will be referred to as a
second-order quantity. In the geometrical context the assumption about ug is
maintained, implying that the model-surface coordinate differences between P
and P, in (1b) symbolized by Aua, are small. The same assumption applies also

for the observational-space coordinate differences between these two points,

r r l‘. (4)

However, the values in éirsxg-xr. corresponding to the negative residuals,
are subject to no such restriction. This is the first distinction between the

standard and the geometrical approaches to nonlinear models.

The second distinction, which {s the cornerstone of our geometrical
approach, is a consequence of (3). Before drawing conclusions from this
minimum-distance criterion, we review the notion of the design tensor,
corresponding in adjustment calculus to the design matrix. In [Blaha, 1984] and
in Sectlon 2.2 of [Blaha, 1987]), this tensor was identified with the set of
partial derivatives axr/au“ at the initial point P, and was presented in a
vectorized form. Thus, A; in (1a) is the design tensor at P, which can be
expressed by means of a set of orthonormal vectors spanning the hyperplane

tangent to the model surface at P:

r _ r,,a T r
Ay s 3x/8u = 00 0w J gk (5)

The above hyperplane Is referred to as the "model plane”, and in Fig.1 it

is symbolically represented by a straight line. The notation Qr. jr,

identifles the orthonormal vectaors at P spanning the model plane by their
observational-space contravariant components, while the notation Qa' Ja.
ldentifies them by their model-surface covariant components. In general, when




identifying individual vectors as geometrical objects, we remove the indices.
The double identification, such as Ax' and Au written side-by-side in Fig. 1,
depicts one and the same vector exjpressed in two coordinate systems. The

notions of model surface and model plane are further discussed in Appendix B,

which also describes in detail the role of the design tensor in either manifold.

The design tensor (5) serves in formulating the model-surface metric tensor

at the initial point P as

_ . . - 8 r
a, =0_2 Jgdag* oo T A B Ay (8)

Relations stmilar to (5) and (6) appear in Chapter 6 of (Hotine, 1969], where
they are derived for n=3 and u=2. Equation (5) provided an early impetus in
treating the adjustment theory via geometry. [ts motivating power stems from
the fact that its left-hand side describes the algebraic structure of the design
matrix in tne parametric adjustment model, and its right-hand side gives this

structure a clearcut geometrical meaning.

In analogy to A;. the design tensor at P can be formulated as

-r ~-r - -r -
Aa = ¢ Qa + ] ja

where the overbars identify a set of orthonormal vectors spanning the hyperplane
tangent to the model surface at P. Due to the orthogonality of &x and the

model surface as dictated by (3). at P we must have

<8 -r
AB gsr dx =0 . (7)

) -8 . = -r
Since A is a mixed space-surface tensor at P, and 6x {s a contravariart

8
3 , i,
space vector at P, the above is a tensor equation at P. This equation

appeared in a similar form .n Sectlon 2.3 of (Blaha, 1987]). The orthogonality
condition (7) embodies the above-mentioned second distinction, in that it is a
precise relation whose actlive exploitation does not have an equivalent in the
standard adjustment approach. As has been indicated in the Introduction, the
latter proceeds by lterations, where a set of values approximating Aua is
refined at each step. When the changes are sufficiently small, the i{terative
process terminates and (7) is satisfied as a by-produci. However, upon seeking

to fulflll this condition at each individual step. the standard approach can be

mndified and the iterative process can be significantly shortened.




Since, in the geometrical context, P {s assumed to be close to P, a good
approximation to Aua is offered by (Aua). where the parenthesis notation
represents the solution of the linearized model described by (la,b) with

r r
N =0, ®

=0’
af afr -r
of the standard approach. We note that if the values in 8x are so large as

This approximation is, in fact, the initial iteration

to approach finite quantities, a better approximation to Aua can be obtained in
a different, more general form presented in the next section. In the current
discussion the linearized model corresponds to the situation where the model
plane replaces the model surface. We retain (ua) as the model-plane coordinate
system, and observe that (6) is the plane's constant metric tensor. In analogy
to a statement made earlier in conjunction with the constant space metric
tensor, we can consider the quantities such as (Aua), Aua, etc., whether
infinitesimal or finite, to be sets of model-plane coordinate differences as
well as contravariant vectors in the model plane, where, if need be., they could

be freely parallel-transported to any location.
The model-plane covariant components of the orthogonal projection of sx’
onto the model plane are obtained with the aid of the design tensor (5):

s
8 gsr

r

(Au_} = A sx (8)

8

where the contravariant vector er, known a priori, can be decomposed as

6xr = xr - x; = (Ax'r) + (Ax"r)

Q
I{n terms of Fig. 1, the double identification (Ax') and (Au) designates one and
the same vector PPl' Based on (8), we have
o8 ) (9)

(Aua) = a (Au

8
where aaB is the model-surface associated metric tensor at P, or the constant

model-plane associated metric tensor, obtained from aBa according to

af a
a = & .
a Br r

[ (Aua) is considered to be a set of model-surface rather than model-plane
coordinate differences, it gives rise to a surface point which, In Fig. 1, is

denoted (P). In consulting the figure, we note that in the observational space

10




this point is arrived at by means of the vector (Ax), where
(axt) = (ax'"y + (vF)
Topics similar to the above are discussed in Appendix C.

If the adjustment model were linear, the model surface would reduce to the
model plane and (Aua) would represent the final parametric corrections. The

design tensor (5) would serve to express
(ax'") = Az (au”)

which would yield the adjusted observations as x;+(Ax'r). The negative

residuals would be found from

(ax"%) = 6xF - (ax' D)
B

The variance-covariance matrix of adjusted parameters would correspond to a® ,
while the varlance-covariance matrix of adjusted observations would correspond
to the necessary associated metric tensor:

A L a®? A; . (10a)

The weight matrix of adjusted parameters would correspond to aﬁa and the weight

matrix of adjusted observations would correspond to the necessary metric tensor:
A 1

Furthermore, the variance-covarlance and the weight matrices of residuals would

correspond respectively to

.8 _ rs _ _,rs “ oo - ot
g g g , gsr gsr gér . (11a,b)

The above relations were presented in (Blaha, 1984].

In the current nonlinear model, (Aua) represents the first approximation to
su”. We remark that in a two- or higher-dimensional model plane the vectors
(Au) and Au are not collinear in general. The sget Aua. when considered in the
role of model-surface coordinate differences, gives rise to the desired least-
squares point P (see Fig. 1). In the observational space this point is

obtained by means of the vector Ax, where

axt = ax' T ob (12a)

1




From (la,b) and (4), we express the right-hand side of (12a) by
ax't o= A: a® (12b)

v e (1/2) o au® af + (1/8) of . ad® ad® A+ L. (12¢)

B 8

This outcome is also discussed in Appendix C.

Whether the least-squares point P should be described by the model-
surface coordinates or by the observational-space coordinates via (12a-c), the
values au® are unknown and unobtainable by closed formulas suci. as (8) and (9)
applicable to the linear model. In view of formulating a useful relationship

for Aua. we first observe that

AT = AT s A" (13a)
a « «

r_.r 8 r B ,..7
AAa naﬁ AuT o+ (1/2) oaﬁr Aum Au' o+ .., (13b)

8_,r
r Qaﬁ’ —
, etc. Equations (13a,b) express the design tensor at P

where (13b) stems from the fact that at P we have aA;/au
32aT /3uPau’-0
a afr

from its counterpart at P. Purther, Fig. 1 shows that dir can be expressed as
x5 = 6x° - ax" (14)

where 8x" 1s known but Axr. determined via a® in (12a-c), 1s unknown. This is
a tensor equation at the least-squares point P, to which 6xr and AxP can be
freely parallel-transported from the initial point P. The tensors 32 and

3x* at P are needed in view of (7).

The approximation set (Aua) will be corrected by A(Aua) to yield the

desired set Aua:
a® = (au®) + a(au®) . (15)

The unknown set A(Aua) will be determined through the precise relation (7). We
stipulate that the level of accuracy in (7) should be of the third order, in the
sense that the neglected terms can only be of the fourth and higher orders. By
a hypothesis common to both the standard and the geometrical approaches, the set
au® contains small quantities and the set (Aua) represents the main contribution
of au®. Thus, (Aua) and Au® are assumed to contain first-order quantities,

while the set A(Aua) is assumed to contain second-order quantities. Finite

quantities contracted with (Aua)(Auﬁ) are considered to be of the second order,

12




similar to finite quantities contracted with A(Aua). Fourth-order quantities to
be neglected are of three kinds: o[(Aua)(Auﬁ)(AuT)(Aué)]. o[(Aua)(Auﬁ) A(AuT)].
and o[A(Aua) A(Auﬁ)]. Since the last kind involves quadratic terms in A(Aua).

the reason for carrying out the solution to the third order becomes clearer.
In considering the known quantities (Aua). similar to (13a,b) we have

(D) = AL+ al . (auf) v (1/2) of . () ) + ... . (18)

8 B
We now form K; based on the outcome for (A:):

ir r r
AL = (Aa) + A(Aa) . (17a)

The set A(A;) can be obtained as 5: in (13a,b) with Aua substituted for by
the right-hand side of (15), minus (A;) from (16). This yields

8

a(al) = af A(ad®) + o , (au’) aauPy « .., (17b)

B 8

where use has been made of the symmetry of Q;ﬁr in a, B8, and 7 through

r
afy B Br

The dots in (17b) represent o[A(Aur) A(Auﬁ)]+o[(Au5)(Aur) A(Auﬁ)]+..., which

are respectively fourth-, fourth-, and higher-order quantities.

oF . a(ad®) (ad) - o . (auf) a(au’) = 2 o () a(a®)

Purthermore, similar to (12a-c) we write
r r a r a B
(ax" ) = Aa (Au™) + (1/2) naB (au™) (Au™)

¢ (1/6) of . (2% (adf) (au?y + ... . (18)

8

In analogy to the above, we form Axr based on the outcome for (Axr):
axt = (ax") + a(ax’) . (19a)

The set A(Axr) can be obtained as Axr in (12a-c) with Aua given by (15), minus
(Axr) given by (18). This yields

a(ax") = a7 a(au®) + alg (adP) acad®) + ..., (19b)
where we have employed the symmetry of n;ﬁ in @ and 8 through the identity

n;s aau®) (auf) + O;B (au®) a(ad®) = 2 Q;B (auP) a(au®)

13




However, due to (16), equation (19b) simplifies to
a(ax") = (ag) a(ad®) + ..., (19¢)

where the dots represent o[A(Auﬁ) A(Aua)]+o[(Au6)(Aurj(AuB) A(Aua)]+.... which
are respectively fourth-, fifth~, and higher-order quantjities.

Finally, due to (14) and (i9a), we can express sx° as
ax" = (8x") - a(ax") (20a)
where

(6x") = 8x" - (ax") . (20b)
In terms of (17a) and (20a), the precise relation (7) reads

S s r r
[(A3) + a(ag)] g, [(6x") - A(ax)] =0,

or
S r S r
(Ag) gy (8x7) + A(AY) g (6x")
- (AZ) gy, A(8x") - A(A;) g, Alax') = 0 . (21)

The second, third, and fourth terms on the left-hand side of (21) are denoted

respectively as a, b, and ¢, and will now be evaluated.

In considering (17b) we obtain

_ ad e r S
a QﬁT A(Au') gsr (6x ) + oﬁrd

In analogy to the statement that followed (17b), the dots represent fourth- and

(Aua) A(Aur) gsr (5xr) + ...

higher-order quantities. However, (6xr) is excluded from influencing this

order. Further, in consulting (19c) we write

b= (A (A7) a(au®)

%)

8 gsr
In analogy to the statement that followed (19c), the dots again represent
fourth- and higher-order quantities. Finally. in consulting both (17b) and

(19c) we conclude that
c = o[A(AuT) A(Aua)] + ..,

which Is composed entirely of fourth- and higher-order quantities.

14




Upon collecting the results, (21) yields

(AZ) g (6x7) = (AQ) g (A,) A(au’) - g a(au®) g (5x")
- °§ar (au”) a(au®) g (8x") + ..., (22)

where the dots represent fourth- and higher-order quantities regardless of
(er). Equation (22) is equivalent to the precise relation (7). If the terms
symbolized by dots are omitted, the equivalence is valid to the third order. In
this case, the desired set A(Aua) is obtained by solving the linear system

R s s 7 a, _ 8
[(aﬁa) (8x,) Ve (6x ) ®oar (au’ )] a(au™) (AB) (6x.) . (23a)
where
(agy) = (Ag) ggn (AD) . (8x)) = g . (8x) . (23b.c)

All the quantities 1n parentheses are formed with (Aua). The relation
{(23a) could be called "modified normal equations”, and the matrix form of the
quantity inside the brackets could be called "matrix of modified normal
equations"”. The second- and the third-order partial derivatives grouped
$  and ¢ are evaluated at P and can thus be stored and

Ba Bar
treated as constant should (23a) be re-applied. Their "once and for all”

respectively in 02

evaluation is useful since in complex models their re-computation at an updated
point would represent a serious drawback. We remark that if (axr) is small, in
the sense it contains first-order quantities, the third term inside the brackets

of {(23a) can be left out since it would give rise to fourth-order quantities.

3.2 Injitial Iteration with Large Residuals

The development in the previous section was based on the set (Aua) as
obtained in the initial iteration of the standard adjustment approach. In
[Blaha, 1987], such a common jteration was called "zero-th iteration”. This
concept 1s abandaned since the two approaches can now be considered distinct
already at the initial stage. In particular, we develop a general case of the
geometrical approach, where already the first, or initial, lteration is based on

the exact relation (7} valid at the least-squares point P.




In consulting the previous section, we present the barred tensors in (7):

-8 s S T ] 4 a

A, = A A cee

8 8 + Qﬁr u' + (1/2) OBTJ Au’ Au o+ (24a)
&x" = ax" - A au” - (1/2) o:e a® ad® - L. (24b)

To avoid expressions nonlinear in Aua, we introduce approximations in (7)
whereby all terms containing the second and higher powers in au® will be left
ocut, i.e., o(Aua Auﬁ), o(Aua AuB Aur). etc., will be neglected. This means that
the third and further terms on the right-hand sides of (24a.,b) will be
neglected, as well as the term —erAurgsrA:Aua participating {n (7).

Equation (7) is thus written as
A Au o+ er Aur g éx + ... =0, (25)

where the dots represent the terms which would contain the second and higher
powers of Au“, and where no assumptions have been made yet about the size of the
known contravariant vector 8x' . We add that the values constituting A:.

Q;B' and gy, are assumed finite and of mutually comparable magnitudes.

Upon the use of the symbols a and 6xs, where

Ba

S r I
a, = A,s Bgp Aa ' dxs * 8 éx (26a,b)

equation (25) becomes

a _ .8
] Au = AB 5xs . (27)

The first geometrical iteration is characterized by the neglect of the second

S

6x8 QBa L

and nigher powers of Aua in (27), in which case the solution of au® is denoted

temporarily as (Aua}:
[a

K] a 8 ‘
Ba éxs Qﬁa] {Au"} = AB 6xs . (27')

In terms of Fig. 1, this solution would lead to a model-plane point lying

somewhere between P1 and Pa, and to a model-surface point lying somewhere

between (P) and P. If we further neglect -GXSQ;aAua and denote the

corresponding solution by (Aua). equation (27) becomes

a, _ .8 "
Sa (Au™) = AB 6x3 . (27")

which symbolizes the normal equations in the standard adjustment approach.

a
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In the standard approach, the initial values of parameters, u:. are
assumed to be close to the final values, u®*. In our current notation and
terminology, this assumption, which we shall retain, is equivalent to stating
that au® contains first-order quantities. Since only the second- and higher-
order quantities are ignored in (27'), {Aua} in the first geometrical iteration
will recover the main contribution of Aua. The errors in (Aua} will thus have
the magnitude of second-order quantities, consistent with the property

previously attributed to the initial standard iteration.

As the comparison of (27") with (27') reveals, this property of the initial
standard iteration is indeed valid, provided the term _5st§aAua neglected in
the standard approach is at the level of second-order quantities, i.e., at the
level of the terms already neglected by (27'). In general, this is true if 6xr
contains first-order quantities, which is another assumption inherent in the
standard approach. Accordingly., under the two standard assumptions., requiring
that both au® and 5x" contain first-order gquantities, the solution of (27"} 1is
valid to the first order, similar in this respect to the solution of (27'). The

errors in both (Aua) and (Aua} are then second-order quantities.

If the second assumption above is not satisfied and 6x" contains finite
quantities, (27') will still hold true to the first order whereas (27") will
not. Although the quantities in (Aua, will be of the first order, their errors
will in general attain the first order as well, due to the neglect of the first-
order quantities —dxsﬂzaAua. This case is mainly of theoretical interest,
since, In practice, 1t corresponds to excessive observational errors which
should be eliminated beforehand. However, we might also consider the Instances
where ox" belongs to a category “in-between” and contains quantities that are
finite but small, without being small enough to warrant the attribute "first
crder”. Here the solution of (27') is better than the solution of (27"). but
not by an order of magnitude. We conclude that in general the solution of (27')
approximates Aua as wel]l as, or better than, the solution of (27"). Better
results are obtained when the values in dxr have the magnitude greater than that

characterizing the first order.

The quantities forming er and their link to (27') and (27") can be further
elaborated on as follows. Since Aua is of the first order by assumption, and

since the same applies to {Aua) and (Aua), equations (27') and (27") reveal that

17
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B
first order. In fact, (27") allows this tensor to be written as

the tensor A st. which figures on their right-hand sides, is also of the

A; g, 0x = (dug)
The above expression identifies the projection of the vector 8x onto the model
plane, as previously depicted in Fig. 1. Since (Auﬁ) is of the first order, it
follows that i{f the magnitude of the vector 6x is significantly greater than
that characterizing the first order, this vector must be fairly nearly
orthogonal to the model surface. This, in turn, imposes restrictions on the

observational errors.

In summary, if 6x" is of the first order, which corresponds to the presence
of small observational errors as encountered in practice, the first geometrical
iteration (27') has the same level of accuracy as the first standard iteration
(27"). This category includes Gir=0, which, in turn, includes the case of
error-free observations. If the characteristics of 6x° fall into the “in-
between” category, which corresponds to the presence of large observational
errors, (27') has a higher level of accuracy than (27"), although not by an
order of magnitude. Here the errors are restricted in the sense that §x must be
fairly nearly orthogonal to the model surface. Finally, if 6xr contains finite
values, which corresponds to the presence of excessively large observational
errors (blunders) and is thus mainly of theoretical interest, (27') is still
valid to the first order, whereas (27") may give completely false results. In
this case, the errors are restricted in the sense that 4x must be very nearly
orthogonal to the model surface. Since (27') gives results that are as good as
those of (27") in most cases, and better in the remaining cases, the use of this

equation as the first geometrical iteration i3 fully justified.

3.3 Minimum-Distance Property

For the sake of theory, we express 652 (the square of the distance
between P and Q) by means of the Taylor series based on 632 (the square of the

distance bhetween P and Q). The latter is a known constant, namely

532 = 6xs 4 5xP ,
sr

18




while the former is a function of Aua, expressed as

83 = 6x° g _ &%
sr

where 6§r is given e.g. in (24b). In using the symmetry of gsr and Q: in

8

the lower indices, we deduce that

-2 2 « a 8

8s 6s  + 9, Au~ + {(1/2) Haﬁ Au” Au o+ ...,

where
-2 a s r
qa = 3868 /3u = 2 Aa gsr ix
_ .2.-2 a. B _ s r S r

Has = 3 68 /3u 3u = 2 (AB gsr Aa 5x gsr Qaﬁ)‘

The second-order partial derivatives grouped in Haﬁ are assumed continuous, at

least in the neighborhood of the point P.

A similar expression can be written for a model-surface point in the
neighborhood of P, whose square of the distance from G, denoted 552, can be

expressed in terms of 652

2

332 = 53° & g, au®

v (1/2) ﬁas a® aa? +

Here AW” is the difference, in model-surface coordinates, between the point in
question and the point P. The necessary and sufficient conditions for 6§2

to have a local minimum at P are

- -8 -r

q, = - 2 Aa 8r 6x =10, (28)
and
] = positive-definite matrix ; (29)

[HaB

the brackets indicate the matrix equivalent of ﬁaB' where

- R /<8 ir _ o-8 =r
Haﬁ 2 ‘AB 2 Aa 8x €qp QaB)
The latter equation can be written as
(1/2) H , = a, - éx_ Q. (30)
af Ba s fa’
with
- =S -r ~ ~-r
aﬂa = Aﬁ gsr Aa , 6xs gsr 5x- . (31a,b)
19




We first notice that (28) is satisfied by virtue of (7). Purther, since

=8 _ o8 ] g
QBa Qﬁa + °sar Au’ o+ ..., (32)
equation (30) becomes
E_ 2 _ sz a8 _ 2= a8 T
(1/2) Hap apa 6xs Qﬁa dxs oﬁar Au (33)

According to (29), the above quantity, symmetric in the indices a and 8, should
represent a positive-definite matrix. If we now compare the right-hand side of
(33) with the quantity inside the brackets of (23a) in its final update, i.e.,

in the last iteration where (a, ). (dxs). and (AuT) become essentially a

ais. and Aur, we observe that s?thin the required accuracy the two formsﬁ:re
identical. It i{s thus confirmed that the algorithm represented by (23a} leads
to a minimum provided the updated matrix of modified normal equations is
positive-definite, and vice-versa. Since the existence of a minimum is assumed
throughout, and since P is assumed to be sufficiently close to P, the above
outcome implies that the matrix of modified normal equations will be positive-
definite in all iterations, with or without the contribution of the third-order
partial derivatives. This, In turn, implies that it can be inverted by the

Choleski algorithm, as is illustrated in the example presented in Appendix A.
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4. DISCUSSION

4.1 Basic Considerations

The leading subject of this discussion is equation (23a), applied after the
initial fteration. We begin by relating (6xr) to 6§r, where, in the
adjustment context, the latter represents the negative residuals. From (20a) we

write

(6x°) - &x° = a(ax’) .

which, upon using (19c), becomes

(6x5) = 6xF -+ (A:) aad®y + ... (34)

Here the dots again represent fourth- and higher-order quantities. Thus, (6xr)

differs from 6ir by second- and higher-order quantities.

We distinguish three basic cases with regard to the magnitude of the

guantities ccmprising the set 6§r:

1) If dir is of the second order or smaller, (dxr) is in general of the
second order and the two sets (of very small values) may be quite different.
This case includes 6§r=0. where the point Q lies on the model surface as would

happen. for example, with error-free observations.

2) If 5§r is of the first order, so is (6xr). and the two sets are simjlar

in values.

3) If 6§r is large (finite), so is (6xr). and the two sets are nearly equal

in values.

[n the first case, (dxs) is of the second order and (23a) simplifies to

)

8 B

This, however, Is precisely the formula for standard adjustment, corresponding

(ag,) a(au®) = (A7) (6x) . (35)

to normal equations formed after the initial iteration. In particular, the
left-hand side is A(Au‘8
caonsidered at the point (P). We conclude that in this theoretical case. which

), and the equation corresponds to the system (8)

includes the category of error-free observations, the standard solution is valid

to the third order and hence conforms to the strategy pursued in this study.
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The second case, which satisfies the standard assumption that both the
parametric corrections and the residuals are small (first-order), is certainly
the most significant in practice. As was indicated at the close of Section 3.1,

equation (23a) becomes

]
Ba B8
In comparing it with the standard equation of the form (35), we notice that the
;aamu“). which 1s of the third order. The

standard formula in such practical cases is thus valid only to the second order.

S [+ 3
((ag,) - (8x.) Qﬁa] A(BuT) = (Ag) (8x)) . (36)

latter éntails the error (5xs)ﬂ

The newly developed equation (36) is superior to the standard normal equations
by one order of magnitude, which leads to a commensurate increase in the rate of
convergence. In fact, depending on the smallness of Aua. and the.eby on the
proximity of the initial point P to the least-squares point P, the solution of
(36) may be final.

Next. we examine the improvement in the solution if equation (36) 1s re-
applied. We further assume that the orlginal solution A(Aua) is valid to the
third order, the same as the accuracy of the formula (36) itself. The new,
updated set (Aua) is thus valid to the third order (instead of the first order
as assumed {nitially), and the new A(Aua) contains fourth-order quantities. At
this stage (36) reveals that fifth-order quantities are retained, while sixth-
and higher-order quantities are ignored. The new solution will thus be valid to
the fifth order. By contrast, the second iteration in the standard approach
(i.e., the original application of equation 35) would yield the solution valid
to the second order, the next iteration would vield the solution valid to the
third order, and so on. To summarize, the order of errors in the repeated
applications of (38) would be 4, 6, 8, ... , while this order in the standard
iterative process symbolized by (35) would be 3, 4, 5,

From the theoretical standpoint, the most revealing is the third case. As
we have seen, the original formulation (23a) is valid to within the third order.
However, if dxr contains finite quantities, the standard form of normal

equations (35) is virtually useless; it is valid only to the first order, since
s

8
order, the same as the entire left-hand side of (35). Thus, not only does (33)

the first neglected term in (23a), namely —(Bxs)ﬂ aA(Aua). is of the second

entail errors two orders of magnitude greater than errors in (23a), but. in

general, |t does not converge. (If 5x" should belong to an "in-between”
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category discussed in Section 3.2, these statements would be commensurably
softened.) Such facts are at the root of the standard assumption that not only
au® and thereby (Aua), but also 6x' and thereby (5xr) should be small. We
conclude by stating that the standard approach cannot accommodate the third
case, while the new formula (23a) accommodates it to the third order, and the

simplified formula (36) accommodates it to the second order.

As a matter of interest, we examine the possibility of A(Aua) being larger
than second-order. Out of necessity, we assume that A(Aua) contains quantities
whose magnitude is somewhere between the first and the second orders, In the
sense that o[A(Aua) A(Auﬁ)] is of the third order (instead of the fourth order
as stipulated earlier). Clearly, the neglected quantities o[A(Aua) A(Auﬁ)]
cannot be of the second order since this would make even the full equation (23a)
valid only to the first order. The dots in eguations (17b) and (19b) now
represent third- (instead of fourth-) and higher-order quantities. The same can
be said about the terms a, b, and ¢, and thereby about (22) and about errors in
(23a). Due to the modification of the assumption regarding A(Aua), the accuracy
of the three formulas under consideration (equations 35, 36, and 23a) is
somewhat compromised in the first and the second cases, but the effect is not
qualitatively profound. However, in the third case the standard formula (35) is
virtually useless. The simplified formul. (36), although compromised to a
certain extent, leads to useful results, while the full formula (23a) is as
effective as the standard formula (35) would be under the standard assumptions.
(Here again, 1if éxr should belong toc an "in-between” category, all three

formulas would give commensurably better results.)

We note that (23a) could be reformulated with the partial derivatives

evaluated at (P). Since at (P) we have

N P 7
(nBa) = Qﬁa 05ar (Au’) + ..., (37a)

ifn keeping with the stipulated error level we can write (23a) as

s a 3

[(aBa) - (5Xs) (Qﬁa)] A{Au™) = (AB) (5xs) . (37b)

However, the original equatlon (23a) is preferable to (37b) since it displays
the fact that the sets QZa and Ozar can be stored and treated as constant,

and implicitly suggests in which manner and under what conditions {t can be

simplified. We have seen such simplifications in (35) and (36). Although the
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full formula (23a) is appealing from the theoretical standpoint, computer run-

time and storage considerations favor the simplified formula (36).

After obtaining the final parametric values ua-uz+Aua. one can compute
the desired quantities, such as Axr and thereby dir, as well as the tensor

K; needed to form
a, =A Al | (38)

which, in turn, can be used in the variance-covariance propagation and in the

weight propagation. In paralleling the discussion of Section 3.1 pertaining to
af

, obtained from a, via the
Ba

_a-
tensor equation a aﬁT=6:' corresponds to the variance-covariance matrix

a linear model, we state that the tensor a

of adjusted parameters, while the tensor a a itself corresponds to the weight

B

matrix of these parameters. Further, the variance-covariance and the welight

matrices of adjusted observations correspond respectively to

=,rs _ <r -af -s =R - 1]
g Aa a AB ' Esr ~Bgy B ng . (39a.b)

As has been mentioned at the close of Chapter 2, the above tensors describe
"tangential”, or first-order, properties of least squares estimates. In
reference to (Blaha, 1984], the variance-covariance and the weight matrices of

residuals correspond respectively to the tensors
é.,l"S - grs _ E,PS é
sr sr (40a.b)

4.2 Additional Notes

We begin this discussion by demonstrating that an eventual re-application
of (23a) is straightforward and without any pitfalls. We observe that such a
re-application would be equivalent to using (23a) in conjunction with a new
point (P) situated closer to P than the original point (P) obtained via the
initial iteration. The quantity (AuT) would then represent the model-surface
coordinate differences between the new point (P) and the initial point P; (er)
would similarly refer to the new point (P). This situation would change nothing
in the development nor in the results represented by equation (23a) itself. 1In
particular, the utilization of (AuB) from (8), which in Fig. 1 gave rise to the

model -plane point P, and thereby to the model-surface point (P), was essentially

1
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a matter of convenience. If such a model-plane point were found closer to P2
{produced e.g. by the initial iteration of Section 3.2}, it would represent a
welcome shortcut, but none of the pertinent relationships from (12a) on would

change. And If it could be found at the exact location of Pz. the right-hand
side of (23a) would be zero by virtue of (7), which would yield A(Aua)-o. The
same considerations are valid also with regard to the simplified formula (36).
As we have seen, the latter differs from the full formula (23a) by the error

level due to the truncated terms, but only In the case of large residuals.

We now focus our attention on the second case (with small residuals)
represented by (36), and examine whether advantage can be taken of the set Q;ﬁ
in forming (A;) and (6xr). as opposed to computing these tensors from the

nonlinear model. If we include only the term containing 02 in (16) and

8

neglect the subsequent terms, the error in (A;) will be of the second order,

as will be the error In (a a) formed through (23b). Accordingly, the error on

the left-hand side of (36)Bwlll be of the fourth order and negligible.
Similarly, if we include only the term containing Q;ﬁ in (18) and neglect the
subsequent terms, the error in (Axr) and thereby also in (6xr) given by (20b)
will be of the third order, resulting only {n a fifth-order error on the left-

nand side of (36).

However, the right-hand side of (38) offers a different picture. In
Z)(éxs), where (AZ) contains second-order errors and the first-

order quantity (dxs) contains third-order errors, we observe that either kind of

forming (A

errors Introduces third-order errors into the product. Thus, to keep with the
fourth-order error level implied by (36), both (A:) from (16) and (Axr) from
(18) would have to include the terms with QZBT' We note that the order of
magnitude of the remaining truncation errors in these two quantities is
independent of the closeness of (Aua) to Aua, which would preclude a re-

application of (36).

In the case of a single application of (36), only (16) would entail
significant computing effort since (18) could take advantage of the {ntermediate
results Q;B(Auﬁ) and OZBT(AuB)(AuT). If one chose to pursue this avenue, it
would then be quite easy to adopt the full formula (23a) where OZar(Aur) would
pe known from an early intermediate result. However, passing from (36) to (23a)
would nnt decrease the overall error level (fourth-order). In realizing that

Or i{s not needed in (38), we might wish to avoid computing and storing these

aly
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third-order partial derivatives altogether. Accordingly, (A:) as well as
(ax") and thereby (5x‘”)=ax"—(Ax”)sx5-(xr), where (x")=x" ((u*)), would be
computed from the nonlinear model as in the standard adjustment approach. This

choice is further supported by a potential need to re-apply the algorithm (36).

It Is instructive to compare the development presented in this study with
that of [Blaha, 1987]. Although both cases rely on the precise relation (7),
the latter resulted in a less effici{ent algorithm due to the simplification

which we shall now describe. The tensor Ks was utilized in the form

B

AZ+AA; as in (13a). On the other hand, the vector Gir was substituted for
by the right-hand side of (14), but only for the contraction with Angr, not

S

for the contraction with AAﬁgsr' Accordingly, the relation (7) became

s r s r s -r

A‘9 gsr Sx - AB 8y Ax + AAﬁ Eqp 6x =0 .
The first term above was (AuB) by virtue of (8), and the second term was
—aBTAuT-A;gsrvr, as is confirmed through (12a,b). The resulting equation was
contracted with aaB, yielding

a _ a, _af s r af .S -r
Au = (Au) a Aﬁ g vV + a AAB Bqp ix

which, except for minor notatiaonal differences, was presented in [Blaha, 1987]

as equation (28).

The solution in this reference proceeded as if au® were split into
(Aua)+A(Aua) seen in (15), but only for the left-hand side above, not for the
formation of vr by (12c), nor for the formation of 6§r by (14) with Axr given
by (12a-c). The values au® Implied in v’ and Axr were approximated by (Aua).
i.e., the terms beyond the first on the right-hand side of the above equation
were treated as if A(Aua) were zero. This introduced errors in an initially
exact equation, which were an order of magnitude greater than the terms
neglected in the present study. For example, in the situation called here the
second case the thus lIntroduced errors would be of the third order Instead of
the current fourth order. Such simplifications downgraded the convergence
characteristics of [Blaha, 1987) essentially to the level of the standard

approach.

The results as well as intermediate formulas in this study could be
prezented in the familiar matrix notation. In the case of simply- and doubly-

indexed quantities, matrix transcriptions would present no difficulty since
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tensor contractions and matrix multiplications amount to the same operations,
provided the matrices are arranged in the proper sequence and form (direct or
transposed). With regard to three- and higher-dimensional arrays, matrix
manipulations could be extended upon imagining that ordinary matrices are
stacked one behind the other, that groups of matrices are stacked one behind the
other, etc. However, we prefer working with the original indexed gquantities,
which allows more flexibility in derivations as well as computations, and which,
in any case, is at the root of the matrix operations themselves (restricted to
one or two indices). For the sake of interest, Appendix D translates the main

outcome of this study into matrix notation.
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5. SUMMARY AND CONCLUSIONS

A convenient approach for resolving nonlinear least-squares problems
consists in using an isomorphic geometrical setup with tensor structure and
notation. Such a link is highlighted by the consideration that {f, in the n-
dimensional observational space, the metric tensor gsr corresponds to the weight
matrix P, and if the contravariant components Gir of a displacement symbolized
by 8x correspond to a set of estimated observational errors, i.e., to a set

of negatlive residuals -V, then the least-squares criterion
V' PV = minimum

corresponds to the quadratic form

x> g 6x° = 63° = minimum |
sr

where 8s is the magnitude of the displacement. Should &x identify an

unknown displacement from the u-dimensional model surface to the point Q given
in the surrounding observational space through the actual observations, the
minimum-distance property restricts 8x to the segment §Q of a straight line
dropped orthogonally from Q ontsc the model surface, where P marks the
intersection. This situation 1s lllustrated schematically in Pig. 1. Since
orthogonal relations are readily exploited in a geometrical environment, the
least-squares method -- unlike any other method -~ is particularly suited for

geometrical analogy and analysis.

Among the basic correspondences between adjustments and geometry, the
number of observations, n, and the number of parameters, u, correspond
respectively to the dimensionality of the observational space and of the model
surface. The varliance-covariance matrix of observations, I, corresponds to the
associated metric tensor grs‘ while the weight matrix of observations, adopted
as P=£~1, corresponds to the metric tensor gsr' Since £ and thus also P are
constant, the observational space is endowed with a coordinate system (xr} such

that

rs
gsr = constant , g = constant

The set Lb of actual observations corresponds to the set X" of observational-

Q
space coordinates describing the point Q. All possible sets La of adjusted
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observations (subject to no criterion) correspond to the Gauss form of the model

surface endowed with a coordinate system (ua):

< = xr(u“) , r=12,....n, a=1,2,...,u.

The final set of adjusted parameters, Xa, corresponds to a particular set
u® of model-surface coordinates describing the least-squares point P. The set
of initial parameters, Xo. corresponds to the set uz of model-surface
coordinates describing the initial point P. The final set of parametric
corrections, X, then corresponds to Auaeua-uz; these quantities are assumed
to be small (termed first-order). The final set of adjusted observations, La,
corresponds to a particular set xr=xr(ua) of observational-space coordinates
describing the least-squares point P. Similarly, the set P(x°) corresponds to
the set x;=xr(uz) of observational-space coordinates describing the initial
point P. The set of negative constant terms, -L=Lb—F(X°). corresponds to the
z—x:, while the set of negative residuvals,

—V=Lb—P(xa), corresponds to the contravariant vector 5§r=xg-xr. The

r
contravariant vector dx =X

initial design matrix A, which in standard observation equations V=AX+L relates
the parametric corrections to the residuals, corresponds to the design tensor
A;=axr/aua evaluated at P. On the other hand. the standard adjustment

approach does not have equivalents of Q:B and O;BT' which form three- and
four-dimensional arrays, respectively, and contain the second- and the third-

order partial derivatives of xr with respect to ua. evaluated at P.

The geometrical approach is based on a direct exploitation of the relation

) -r
AB €or 5x o, (41)

where 32 represents the design tensor evaluated at the least-squares point

P. and equation (41) itself represents the orthogonality condition at P.

The outcome of the geometrical development is considered in two methods, called
geometrical and extended geometrical. It is contrasted to the standard method
treating nonlinear models in a linearized form. The algorithms associated with
all three methods are presented below in the form of the first iteration, and in

t.e form of the second and subsequent lterations.

All the formulas are written in tensor notation. 1In the case of simply-
and doubly-indexed quantities, matrix transcriptions would present no difficulty

since tensor contractions and matrix multiplications amount to the same
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operations, provided the matrices are arranged in the proper sequence and form
(direct or transposed). With regard to three- and higher-dimensional arrays,
matrix manipulations could be extended upon imagining that ordinary matrices are
stacked one behind the other, that groups of matrices are stacked one behind the
other, etc. However, working with the original indexed quantities allows more

flexibjlity in derivations as well as in computations.

In tensor notation, the initial matrix of normal equations corresponds to

the model-surface metric tensor a at the initial point P, and the initial

Ba
right-hand side of normal equations corresponds to the model-surface covariant
vector Asdx at P, where
8 s
s r r
aﬁa Aﬁ gsr Aa , axs gsr sx .

The parametric corrections stemming from the first iteration are symbolized by
(Aua), and they give rise to an updated point (P). The latter is described by
the model-surface coordinates (ua)=uz+(Aua). The guantities belonging to (P)
will likewise be written in parentheses. The parametric corrections obtained in
the second iteration will be denoted A(Aua). and they will give rise to a new
updated point determined via (ua)+A(Aua). The notation used in conjunction with

the second jiteration will be retained also for any further iterations.

Standard method. Under the assumption that both sets Aua and dxr contain

small quantities (first-order), the first iteration in the standard method reads

a, _ .8
5, (Au) = Aﬁ dxs . (42a)

representing the initial normal equations. The second and further jiterations

follow the same principle:

S

8 8

As is illustrated by the example in Appendix A, the convergence properties of

(ag,) a{ad®) = (A% (8x) . (42b)

this method may be significantly impaired by an increased size of observational

errors.

Geometrical method. Under the same assumption as above (both sets Aua and

éxr contain small guantities), the first iteration utilizes the same formula as

its standard counterpart, namely

(Aua) = A3 ix . {43a)
a )

48 8
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However, the second and further iterations proceed according to

S
Sa B

representing the modified normal equations. The triply-indexed quantity 1

[(agy) - (8x)) 07 1 a(su”) = (A3 (6x)) (43b)

s
Ba’

formed by second-order partial derivatives of the observables with respect to
the parameters, is evaluated only at the initial point P. The formulas (43a,b)
are relatively simple yet efficient, and are suitable for practical applications

where the convergence of the standard method is problematic.

Extended geometrical method. Although the assumption regarding Aua is

unchanged, this method is tailored for sxt containing relatively large

quantities, for which the first iteration reads

s
8

Compared to the geometrical method, the current algorithm is seen to utillze

fa. - o6x_ 0> 1 (au®) = A

3 s Qﬁa st . (44a)

second-order partial derivatives and to give rise to the modified normal

equations already In its first iteration. The formula for the second and

further fteratiuns is given as

s
Ba Ba

representing the modified normal equations at updated stages. Here use is made

of ol containing third-order partial derivatives. This quantity is

Sar
evaluated only at P, similar in this respect to QZ«' We note that the

- _ S T a, S
((agy) - (8x,) Og, - (6x ) ©5  (8u')] A(8u”) = (Ag) (8x) (44b)

quantity inside the brackets of (44b) could be replaced by (aBa)—(dxs)(QZa).
where (an) would represent the second-order partial derivatives evaluated at

an updated point.

After obtaining the final set of parametric values ua-u:+Aua. one can
compute the desired quantities R;. Axr. and dir either from the nonlinear

model or by using the Taylor series expansion. The tensor ZZ is needed to

form

- -8 -r

aﬁa - AB gsr Aa ’
which corresponds to the weight matrix of adjusted parameters. The tensor ﬁaﬁ
obtained from asa through the relation iaBQﬁraai then corresponds to the

variance-covariance matrix of adjusted parameters. Further we have

-,r8 _ or -af ;s - . -,1J
[4 Aa a AB , Esr gsi 13 EJ,: s
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which correspond respectively to the varlance-covariance aind the weight matrices
of adjusted observations. The above tensors are expressible by means of
orthonormal vectors tangent to the model surface at P. Accordingly, they
describe "tangential”, or first order, properties of least-squares estimates.

Finally, the tensors

=.r8 _ rs _-,rs R _ 3
g e -g €, = & - 8.

correspond respectively to the variance-covariance and the weight matrices of

residuals.

A significant contribution to the understanding of the least-squares
adjustment theory through differential geometry has been made by Teunissen
[1985]. The geometry of a nonlinear adjustment is treated in his Chapter IV,
the main toplc of which Is Gauss' iteration method. This method characterizes
the standard adjustment approach as is confirmed, for example, by the text on
page 109 stating that "at each iteration step the observation point is
orthogonally projected onto a new tangent space”. Such an algorithm is
equivalent to the solution of the type (42a,b) above, which, in terms of Fig. 1,
would result in the projection of the point Q onto the model plane passing
through the initial point P, followed by the projection of Q onto a new model
plane passing through an updated point (P), etc.

In the same vein, page 109 (ibid.) states that Gauss' iteration method
"consists of successively solving a linear least-distance adjustment until the
necessary condition of orthogonality is fulfilled”. This coadition, equivalen*
to our equation (41), is fulfilled in the standard method as a by-product of the
projections discussed above. By contrast, the geometrical approach actively
seeks to fulfill it at every step. A one-step solution producing the least-
squares point P directly is hindered only by the necessity to truncate certain
terms, but not to the extent of making the entire model linear (see the above
equations 43b and 44a,b). The matrix of modified normal equations generated in
the process is positive-definite, similar in this respect to the matrix of

normal equations in the standard method.

Although the behavior of the standard adjustment algorithm has been
analyzed and described in detail by Teunissen {[1985], the behavior of the
geometrical algorithm developed herein allows ample opportunity for further

analysis. A study comparing the geometrical approach with alternative methods
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would be worthwhile for the sake of theory as well as for practical reasons
{computational burden, rate of convergence, etc.). Another worthwhile effort
would be to study the effect of the model's nonlinear{ty on the statistical
properties of least-squares estimators, as is outlined in Section 6 of Chapter
[V, tbid. The need for further research is also underscored by the fact that
the above discussion has touched merely on one class of adjustment problems, the
parametric adjustment. Nonlinear versions of the general method (with or
without constraints), rank-deficient systems, etc., all await a systematic

geometrical treatment.

Indeed, as the Epilogue to his Chapter IV, Teunissen [1985]) indicates that
scientists are only on the brink of understanding the complexity of nonlinear
adjustment. He further states: “Unfortunately, one can seldom extend the
elegant formulation and solution techniques from linear to non-linear
situations. Por most non-linear problems one will therefore have to recourse,
in practice, to methods which are iterative in nature”. In this light, the
present study constitutes a contribution in accelerating, although not

completely eliminating, the iterative process.

Encouraging results have been obtained in the numerical example presented
in Appendix A, illustrating convergence properties of a third-order polynomial
in four variables. Although the standard method converged slowly in one of four
analyzed cases and diverged in two others, the geometrical method converged in
two and three iterations, respectively. The extended geometrical method further
reduced the number of iterations from three to two. 1. i1s uxpected that in most
nonlinear cases the presence of second-order partial derivatives will translate
into two {terations in the geometrical method as compared to several iterations

needed by the standard method.

In spite of the accelerated convergence of the geometrical approach, the
fact remains that the methods discussed herein, as well as other methods used in
physical sciences for adjusting nonlinear models, are iterative in nature.
However, one can concelve of a geometrical scheme where the determination of the
least-squares point P can be made arbitrarily accurate in one single step upon
increasing the number of meaningful terms {n the Taylor series expanslons. Such
an approach would have to be fundamentally different from the one described in
this study, where an increase in the number of meaningful terms has certain

limitations. 1In particular, if the observational errors are relatively small,
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the current geometrical approach cannot take advantage of the third- and higher-
order partial derivatives of the observables with respect to the parameters,
whose contribution would be invalidated by the truncation errors of comparable
magnitudes. Thus, developing a theoretically distinct geometrical setup along

these lines {s yet another challenge in the field of the nonlinear least-squares

adjustment.
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APPENDIX A

NUMERICAL EXAMPLE

The nonlinear parametric adjustment model {s represented by six
observables, each expressed by a third-order polynomial in four variables.
Thus, the number of observations is six, n=68, and the number of parameters is
four, u=4. A simpler adjustment problem featuring a second-order polynomial was
presented by Bessette [1987], who utilized the algorithm described in [Blaha,
1987]. Although that algorithm lowered the number of scalar multiplications in
each iteration as compared to the standard method, it did not accelerate the
rate of convergence (see Section 4.2). It has been superseded by the algorithm
developed here, which has been programmed and verified independently on two

different computers.

in terms of the four parameters ua, a=1,2,3,4, a general observable denoted

X 1s expressed by

where a ranges from 1 to 4, 8 ranges from a to 4, and y ranges from 8 to 4. The
numerical values of the four c-coefficients (linear), the ten k-coefficients

{quadratic), and the twenty m-coefficients (cubic} for all six observables are:

+0.8, +1.2, +0.8, +1.5; +2.3, -1.6, +1.7, +2.0, +1.8, -2.1, +2.1, +1.5,
+2.4, +2.1; -1.1, +0.8, -0.9, -2.1, +1.0, -2.0, +1.5, +2.0, -0.9, -1.2, +0.8,
-1.9, -1.3, +0.9, +1.2, +0.8, -2.1, -1.6, +#1.8, +1.1.

«1.7, +2.1, -2.1, +1.8; +1.3, +2.2, +#1.0, -2.2, +1.7, +1.7, +2.1, +1.8,
+0.7, +1.8; +1.3, -0.8, -0.9, -2.1, +2.0, +1.2, -1.8, +0.9, -1.3, +1.3, -2.1,
-0.9, +1.5, +0.8, +1.1, +1.7, -2.1, -1.8, +#1.2, -1.0

+1.3, -2.1, +1.7, +2.1; +2.2, +2.3, -2.2, +1.1, +1.2, +2.0, -1.7, +1.5,
#1.9, +#1.7; -1.1, -2.0, +1.7, +0.8, +1.0, -2.1, +2.2, +1.2, -1.9, +1.7, -1.4,
-0.8, +0.8, +1.0, -1.1, -0.9, +1.8, -1.4, -0.9, +2.1.

+1.8, +1.0, -2.1, +1.1; -1.7, +#2.2, +1.6, -1.6, +1.6, -1.2, +2.1, +2.3,
-2.1. +#1.2;, -2.2, -0.8, +1.0, -i.2, +0.9, +1.3, -0.8, +2.1, +1.9, +1.2, +0.9,
-1.5, -1.6, -0.8, -1.0, +0.9, -0.9, +2.1, +0.8, -1.3.
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+0.9, +2.1, -2.1, +1.8; +1.2, +1.7, +2.2, -1.5, +1.9, +1.3, -2.2, +1.7,
+1.0, +2.3; +1.1, -1.2, -0.9, +1.3, +1.5, +1.0, -0.8, -2.2, +0.8, +1.7, -1.2,
-0.8, +1.1, -2.0, +1.7, -0.9, +0.8, +1.3, -1.8, -1.1.

+1.7, +«1.2, +1.7, -1.8; +2.1, +1.6, -1.1, +1.9, +1.8, +1.7, +2.0, +1.2,
+1.6, ~-1.7; +1.83, +2.1, -1.0, -0.8, +1.2, -2.1, +2.2, -1.6, -1.8, -0.8, +1.9,
+1.2, -0.9, +1.2, +2.0, -1.7, +1.1, +#1.0, +0.8, -2.2.

The positive-definite variance-covariance matrix of observations

corresponds to the associated metric tensor grs' chosen as

+1.3266 +0.5254 +0.3669 +0.1572 -0.2667 -0.0549
+1.3457 -0.0281 +0.5924 -0.1448 +0.5521

= . . +1.43143 +0.5144 +0.3600 -0.5204
+1.4629 -0.5604 +0.4877
+1.3930 -0.1034
+1.3500

rs
g

where the dots denote the symmetric elements. The positive-definite weight
matrix of observations corresponds to the metric tensor g coaputed from

gksgsr=8:. The initial set of parameters is represented by

v® = +1.399, -1.201, +1.299, +1.099 ,

describing the initial point P by model-surface coordinates. The observational-
space coordinates x; of this point are determined from the model, as are the
r r
, and 0
a

af Br
here, and any further set is zero). Finally, the elements of xr representing

sets of partial derivatives AZ. Q (the last set is constant

error-free observations are
x® = +4.80, -4.79, +33.44, +0.33, +22.47, -11.69 .
These values correspond to the following set of final parameters:

uw® = +1.4, -1.2, +1.3, +1.1

The example has been generated in four versions which differ from one
another by the size of the final residuals. Each version is treated by three
methods summarized in the conclusion: standard, geometrical, and extended

geometrical. A basic version has been generated with excessjvely large final
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resjiduals grouped in the tensor -dir:
éir = +3.22, +22.55, -10.59, -1.28, +24.27. +14.68 .

This version gives rise to a total of four, upon scaling the values in dir by

a factor ¢, where
c = 0.001; 0.01; 0.1; 1.

The residuals in the first version (c=0.001) can be considered first-order, or
essentially differential, as required by the standard methodology. On the other
side of the spectrum, the residuals in the fourth version (c¢=1) are so large

that this case is presented mainly for the sake of theoretical interest.

The iterative process is terminated in each method and each version when
errors in all of the parameters ua, a=1,2,3,4, are less or equal to 5x10—8.
Such errors remaining in u® are listed below only for ua, for which they are in
general the worst. In the standard method, the errors In u4 are very similar to
those in u2 (including the sign), but their magnitude is slightly larger. A
statement of this kind applies also to the geometrical method for small values
of ¢ (represented by ¢=0.001 and ¢=0.01). The reverse is generally true for
large values of c (represented by c=0.1 and c=1) in the geometrical method, and

for all four c's in the extended geometrical method.

Results for u2 in the standard method, in the geometrical method, and in

the extended geometrical method are:

c=0.001 ..... stand.: -4x10°, +3x10°8 ;
geom. : ~ax10°8, +2x10712
c =0.01 ..... stand.: -3x10°°, s2x10°8, ~3x1077, +3x10°% .
geon. : -ax107%, +2x107?
c=0.1 ..... stand. : —2x10_4. v2x10°%, -ax107Y, eax1074, diverges ;
geom. : _ax107%, +1x1077, -1x10710
ext. geom.: _ax107%, -1x10710
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c=1  ..... stand.: -2x10°, +2x1072, -2x107, +1x10°, diverges ;
geom.: -2x10"3, -1x1070, +1x107% ;
ext. geom.: -1x1070, -2x10710 |

The above results and further computer runs warrant the following comments:

1) Results substantially worse than those listed for u2 have been noticed

for ¢=0.001 in the case of the parameter u4 in the geometrical method (+1x10'11
as opposed to +2x10-12). However, such exceptions do not detract from the

overall pattern seen above.

2) The passage from the geometrical method to the extended geometrical
method, 1.e., the inclusion of second-order partial derivatives in the first
jteration and of third-order partial derivatives in the second iteration, has no
appreciable effect on the adjustment with small residuals (c=0.001 and c=0.01).
On the other hand, in case of large residuals (c=0.1 and c=1) the effect is seen

to be great and the number of iterations is reduced from three to two.

3) If, in the extended geometrical method for c¢=0.1 and c=1, the first
iteration is adopted from the standard method ({.e., if the second-order partial
derivatives are excluded from that iteration), the total number of iterations
will grow from two to three. As an example in the case c=1, the errors in the
third iteration in such a mixed method have the same order of magnitude as the

errors in the second iteration of the extended geometrical method proper.

4) If, in the extended geometrical method for c¢=0.1 and c=1, the second
iteration uses only second-order partial derivatives (in keeping with the
pattern of the first iteration), the errors will worsen by approximately two
orders of magnitude. However, this does not lead to an increase in the number

of iterations (namely two) resulting from the current cut-off criterion.

5) In this example, where fourth- and higher-order partial derivatives are
zero, a procedure utilizing updated second-order partial derivatives in the
second iteration of the geometrical method agrees perfectly with the extended
geometrical method. This useful verification can be described as follows. In

general, the updated second-order partial derivatives can be expressed by

Ba

) = a8 + 02 (ad) +.

(@ Ba Bay
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Since here the quantities represented by the dots are zero, the equality holds
true with only two terms on the right-hand side. But this is precisely the form

featured by the extended geometrical method.

6) In the geometrical and the extended geometrical methods, as well as in
the mixed methods of the comments numbered 3 and 4, the solution of the modified
normal equations has been carried out using both the Gauss elimipration algorithm
and the Choleski algorithm for positive-definite matrices. All the results,
including the inverted matrices of modified normal equations in all iterations,
have been found {dentical to all 11 digits printed. This illustrates that in
the usual case of continuous second-order partial derivatives and of the
solution converging to a minimum, the matrix of modified normal equations

evaluated in the neighborhood of the final point P is positive-definite.

The above example illustrates that the standard method converges {n general
only for small residuals (here for ¢=0.001 and ¢=0.01). When larger residuals
are present, this method either converges very slowly or diverges (the latter
has been observed for c=0.1 and c=1). The geometrical method is particularly
attractive. [t is relatively simple, yet it converges In two iterations for
small residuals (c=0.001 and ¢=0.01), and in three iterations for large
residuals (c=0.1 and c¢=1). 1In the case of large residuals, the use of the
extended geometrical method further reduces the number of iterations to two.
This reduction has been accomplished here even without third-order partial
derivatives in the second iteration, which suggests that a fourth method could
be adopted (the mixed method of the comment 4), where only second-order partial
derivatives evaluated at P would be used, whether in the first or in subsequent
iterations. In conclusion, we have seen that the standard procedure may be slow
to converge, or may diverge if the residuals are large, whereas the use of
geometry leads to fast convergence, represented here by two or three iterations

depending on the level of simplifications.
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APPENDIX B

MODEL SURFACE AND MODEL PLANE

In this study, the underlying space encompassing all the geometrical
objects is an n-dimensional flat space called the "observational space”. The
space coordinate system used exclusively is symbolized by (xr}, r=1,2,...,n, in

which the metric tensor is
Bgp constant . (B.1)

In matrix notation, gsr would be represented by a positive-definite matrix of
dimensions (nxn). Embedded in the observational space is a u-dimensional
surface called the "model surface”. The surface coordinate system is symbolized
by (ua}. a=1,2,...,u. The surface coordinates are considered in the role of u

independent variables, without any specific physical meaning.

In the observational space, the model surface is defined by the Gauss form:

xk = xr(ua) . r=1,2,...,n, a=1,2,...,u. (B.2)

Equation (B.2) restricts the values the coordinates x' can have in order to
describe points on the model surface. This form, expressing each of the n space
coordinates as some function of the u surface coordinates, {s considered known.
It is a higher-dimensional analogue of the Gauss form presented in Chapter 6 of
[Hotine, 1969], describing a two-dimensjional surface (u=2) embedded in a three-

dimensional space (n=3).

In the vicinity of an "initial" point P, whose model-surface coordinates

are u:. (B.2) can be expanded in the Taylor series:

X = xr(ua) = xg + A; (ua-u:) + (1/2) Q; (ua-u:)(uﬁ-ug)

8
r a a« B B, T 7
+ (1/6) OGBT (u uo)(u uo)(u uo) (B.3)
where Ar. ﬂr , o’ , ... are coefficient sets evaluated at P. The set
a’ "af’ “afr

Q:B is symmetric in a« and 8, the set O:BY is symmetric in a, 8, and 7y, etc.
The differentiation of (B.3) yields

r,, e r r a 8 8 a a
ax /3u Aa ae + (1/2) QaB [Je(u uo) + (u uo)dg] + .,
which, upon taking advantage of the symmetry, becomes
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axT/au® = Az + Q:B (uﬁ—ug) + (1/2) 0ZBT(uﬁ-ug)(ur-u£) + ... . (B.4)

Similarly, we form

2. r a, 8 _.r r T_.T
3°x /3u 3du" = naB + oaﬁr(u uo) L (B.5)
3.r a. B 71 r
3°x /3u 3u 3u’' =0 + ., B.6
/ . (B.6)

etc., where the dots indicate higher-order terms.

At the point P, where ua=u:. we have from (B.3)-(B.6), respectively:

X =X (B.3')
ax’/au“ = A: , (B.4"')
2.r a. 8 r ,
3 X /3u 3du Qm3 , (B.5')

3 r a. 8.1 r
3 du 3u du’ =0 . B.g'
X/ u aBy ( )

etc., confirming the coefficient sets in the Taylor series expansion (B.3).

Section 3.1 has introduced A: as the "design tensor", expressible via the
components of u orthonormal vectors &, j, ... spanning the hyperplane tangent to

the model surface at P:

r a _,r _ r r
dx /3du Aa [} Qa + ja + ., (B.7)

which transforms like a space tensor in the contravariant indices, and like a

surface tensor In the covariant indices. Any set of orthonormal vectors

spanning this hyperplane is acceptable. In [Hotine, 1969] the tensor ax" /au®
was presented for n=3 and u=2. On the other hand, QZﬁ' OZBT' ... are not

tensors. For example, from equation 8.14 In [Hotine, 1969) it follows that

2.r a, 8 _ 0 t .s r ,r
2% /au%auf = Ay I':tAaAﬂ+I‘aBA7.
where A;ﬁ. the surface covariant derivative of A; with respect to uﬁ. is a

tensor, but azx'/au“auﬁsnz is not, due to the Christoffel symbols.

8
At the initial point P, a set of n orthonormal vectors ¢, J, ... , v,

spans the n-dimensional observational space. A subset of u vectors, ¢, J, ... ,

spans the above hyperplane, while the remaining n-u vectors, v, ... , are normal

to it. The observational-space metric tensor at P is expressible by
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gsr = 28 cr + Js jr + .., + us Ve + ... (B.8)

The model-surface metric tensor at P is

- . aS r
aﬁa cf 2“ + j3 Ja + ... Aﬁ gy Aa , (B.9)
which follows from (B.7) and (B.8). In matrix notation, a would be

Ba

represented by a positive-definite matrix of dimensions (uxu).

Next, consider another u-dimensional surface embedded in the observational
space and containing the point P. The independent variables (u“), a=1,2,...,u
are again adopted to be the surface coordinates, and thelr values at P are again

uz. The spatial description of the new surface is provided by

B S _oF r a a
X ' (u) X, * Aa (u uo) . (B.10)
Contrasted to (B.4)-(B.6), the differentiation now yields

ax'r/au“ = A: = constant , (B.11)

3%xT/au%a® = 0 | 3%xT/au%adPau’ = 0, (B.12a,b)

r
r «
., are zero. Since Aa in (B.11) is constant, and

’

etc. Similar to (B.3') and (B.4'), at P we have x'r=x; and ax'r/aua=A

r r
11 a ., 0 .
while a of 28’ Yapy

p is constant by definition, the metric tensor for the new surface is

s r
aﬁa = Aﬁ gsr Aa constant , (B.13)

implying that the surface is flat. It is thus a hyperplane, which we call the
“model plane". Necessarily, the hyperplane tangent to the model plane at P is

the model plane itself,

In analogy to (B.7), the constant tensor in (B.11) is written in the form

I a _,F _ .., N
ax' /du Aa L ‘a + ] Ja + ..., (B.14)
where the orthonormal vectors ¢', j', ... lie entirely in the model plane.

Since the tensors in (B.7) and (B.14) are equal, we anticipate that the vector

sets ¢, jJ, ... and ¢', J', ... can be made identical, and thus that the model

plane is tangent to the model surface at P. This follows from the facts below:
1) The independent variables (ua} represent the coordinate system for both the

model surface and the model plane;
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2) The model-surface metric tensor aﬂa at P is the same as its (constant)
counterpart for the model plane; and
3) The model-surface design tensor A: at P is the same as its (constant)

counterpart for the model plane.

In carrying out the proof, we let the coordinate differences du® represent

an Infinitesimal model-plane displacement from P along the unit vector f2'. The
contravariant components of ¢' in model-plane coordinates are 2'a=dua/ds, where
ds is the length of the displacement obtained from d32=duﬁaﬁadua. Similarly,
one formulates J’a. etc., where
%=1, %y =0,
a a

Due to item 1, the set du® can also represent an infinitesimal displacement in
the model surface. We denote the length of this displacement by d¢, and a unit
vector in the direction of the displacement by ¢. The contravariant components

of ¢ in model-surface coordinates are 2a=dua/d2. Due to item 2, we have df¢=ds

and thus 2a=2'a. In the same way, Ja=j'a, ... . Due again to item 2, we have
Qa=2&' Ja=1;. , 80 that
e®e =1, t* 35 =0,
« a
Accordingly, the thus constructed vectors ¢, j, ... behave like model-surface

orthonormal vectors at P.

With regard to the spatial configuration of ¢, j, ... , item 3 reads

r r < o'T r
¢ la + ] Ja + ... ¢ ea + Ja + .,

where (B.7) and (B.14) have been utilized together with the fact that 2&=Qa,

jé=ja. ... . Upon succesgsive contractions with Qa. ja. ... , it follows that

ef a7 R L (B.15)

From the equality of their space components we deduce that the vectors ¢ and ¢°',
j and j', etc., are identical. Since &, j, ... are tangent to the model surface
at P, and ¢', j', ... lle entirely in the model plane, the model plane defined
by (B.10) is seen to be tangent to the model surface defined by (B.3). The
point of tangency, P, is described by u: in the common surface coordinate

system {ua), and by x;=xr(u2) in the space coordinate system (xr).
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APPENDIX C

LINKS BETWEEN OBSERVATIONAL-SPACE, MODEL-PLANE,
AND MODEL-SURFACE COORDINATE DIFFERENCES

If, as in the current study, the underlying observational space is flat and

the space coordinate system (xr} is such that

gsr = constant ,

in analogy to Cartesian coordinates it can be shown that
A" = Ap (C.1)

where the set Ax" contains the observational-space coordinate differences
between two points, and Apr symbolizes the difference, in contravariant
components, between the position vectors of these two points. The set Apr gives

rise to the tensor equation
ap" = as k¥, (c.2)

where kr represents the contravariant components of the unit vector k in the
direction of Ap, and As is the length of Ap. Just as in Cartesian coordinates,
the position vector p belonging to any point in space can be freely parallel-
transported from that point to an arbitrary location, and the same can be said

about Ap and k.

Since we shall use exclusively {xr} as the observational-space coordinate
system, we write ax® for Apr. although in general coordinates (C.1) would not

hold true (it i{s not a tensor equation). From (C.2) we deduce
r r
As = Ax kr = (1/4s8) Ax Axr ,
or
282 = ax% ax = ax® g ax®, (C.3)
where
r

Axs = Egp Ax . (C.4)

Equation (C.4) is written in lieu of the tensor equation Aps-gsrApr.
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Similar considerations apply for the model plane with aﬁaaconstant as given

by (B.13). In analogy to (C.1) and (C.2), we thus write
au® = ap% | (c.5)
a0 = as k% . (c.8)

Here the symbols Ap, As, and k are used independently of the same symbols

appearing in (C.1,2). 1In analogy to (C.4), we also have

AuB = aBa au® , (c.7)
a

representing the tensor equation Apﬁ=aBaAp .

In linking observational-space and model-surface coordinate differcnces we
shall proceed via the model plane, where we can take advantage of the property
{C.5). Let AX' represent a model-plane vector emanating from P, which, in

Fig. 1, is the vector symbolized by the arrow PPZ. Upon considering ¢, j,

to be orthonormal vectors spanning the model plane, it follows that

ax'T=a et b3t ., (c.8)

where a, b, ... are scalars. I[f the same vector should be described by model-

plane rather than observational-space components, we denote it Au and write

ad® = a® + b ja + o (C.9)

Due to (B.14), presented here as

AL =0 ¢+ 3 3 o+ ..., (C.10)

one obtains
ax't = A: ad® (C.11)

where Ax'" symbolizes the contravariant components of the above vector as well
as the corresponding coordinate differences in the observational-space
coordinates, and au® symbolizes such components and such coordinate differences

in the model-plane coordinates.

Since both (C.8) and (C.9) hold true also when the indices are lowered, we

readily deduce that

s T
AuB = AB gsr Ax . (C.12)
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This relation can also be obtained from (C.11), upon contracting the latter with
A;gsr and recalling (C.7) together with (B.13). As a special benefit, if Ax'
were replaced by a general space vector Ax, the left-hand side of (C.12) would

describe a projection of that vector onto the model plane.

To confirm this property, suppose that the contravariant components of a

r 1)
space vector are Ax' +Ax'r. where

Axnr = q Ur + .

In terms of Fig. 1, we can imagine Ax" as a vector perpendicular to the model

plane at Pz. It then follows that

o AS r
Auﬁ AB gsr (Ax' " +Ax

In other words, if the components Ax'r+Ax"r are known, (C.13) yields the model-

lir

) = AS (C.13)

plane covariant components of the projected vector, AUB' The observational-
space contravariant components of the projected vector, Ax'r, can be obtained

via (C.11) upon first utilizing

au® = a®® Ay (C.14)

g8
af af a
where a is the model-plane associated metric tensor {such that a aBT=67)'
One feature of equations (C.13) and (C.14) is that they demoustrate how the
observational-space components of a vector can be converted in » model-plane

coordinate differences.

We shall next present a spatial link between the model surface and the
model plane by relating corresponding points in the two surfaces. In Fig. 1,
a pair of such points is depicted by P and Pa. Their correspondence is
understood in the sense that the same set of values u® represents the model-
surface coordinates of P and the model-plane coordinates of Pa. In the

observational space, the points P and P, are identified by their position-

2
vector components x* and x'r, respectively. By subtracting from either of the

latter the position-vector components of P, xz. we have

r r r r r r
Ax = X - xO . Ax'T = x'° - xo .

These sets of contravariant components, which represent also sets of coordinate

differences, fdentffy the vectors Ax and Ax' symbolized in Fig. 1 by the arrows
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PP and PP2, respectively. Upon denoting

a a a
AU = u -u_ ,
o

the comparison of (B.3) and {(B.10) reveals that

AX = Ax' + v, (C.15)
where the contravariant components v of the vector v are given as

a B r a B8 .7
8 Au- Au” + (1/8) oaﬁr Au AUT Au' o+ L (C.18)

The vector v provides the desired link between the two surfaces.

r r
v = (1/2) Qa

In considering that the symbols x are interchangeable here with p, the
relation (C.15) 1s a tensor equation. On the other hand, since Q;B. ozﬁr'

are not tensors, (C.16) is not a tensor equation, but this does not detract
from its usefulness. We observe that tensor considerations have been important
mainly in deriving (C.13), where the symbols Au and Ax' represent the same
geometrical object. The tensor contraction with aaﬁ in (C.14) then yields Aua.
which identifies both the set of contravariant components of the vector PP2 and
the set of model-plane coordinate differences between P2 and P. Due to the
definition of {ua}, the set Aua represents also model-surface coordinate

differences between P and P.
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APPENDIX D

MATRIX NOTATION

If needed, the results of this study can be transcribed into matrix
notation. This is greatly facilitated by the close correspondence between
tensor contractions and matrix multiplications. 1In the cases of OZB and
o:Br. respectively, we introduce three- and four-dimensional arrays into the
matrix context. In transcribing the corresponding quantities, the indices will
be dropped. The letter symbols will be retained, but * will be attached to
quantities corresponding to purely covariant tensors. Thus, the tensors grs'
A, a®®, ax", ax’

tensors g, a
sr

, Aua, etc., will become g, A, a, 8x, Ax, Au, etc., while the
Ba’ AuB, etc., will become g*, a*, Au*, etc. The first index
identifies the rows and the second index, {f preseut, identifies the columns.
If the indices are mixed, as in A:, the upper (contravariant) index i3

regarded as the first and the lower (covariant) index Is regarded as the second.

The sets Q:B and OZBT will be transcribed respectively as a three-
dimensional array Q0 of dimensions {(nxuxu) and a four-dimensional array ¢ of
dimensions (nxuxuxu). In analogy to the matrix A of dimensions (nxu) evaluated

at P according to
A= [ax/aul. ax/aua, .. ),

where x represents the observables and ul, ua,... are the individual parameters,

the arrays Q and ® are formed at P as

agsaul, an/au®, ... ]

a = [3A/3ul, aa/aul, ... 1. o

Upon considering the order of contractions, it becomes clear that the expression

A;gSr corresponds to ATg‘ (and not, for example, to Ag* which is not even
3 will be

defined). The contractions of the kind Q;B(AUB) and (8x) 0%

transcribed as (1(Au) and (éx‘)To, respectively.

In dealing with quantities related to the observables, such as xg. xr.
x;. 5xr, Axr. Gir. etc., which in the geometrical context of the
observational space represented sets of coordinates or sets of coordinate
differences equivalent to tensors, we again drop the indices and use the symbols
Xy X. X, 8x, Ax, &x, etc. The column vectors (of n elements) xq, X, and X,

Q

denote respectively the actual observations, the adjusted observations, and the
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observables consistent with the initial set of parameters. The column vectors
5x. Ax. and éx, the latter containing the negative residuals, follow

respectively from the relation below (8), from (4), and from (14):
6x = x. - xX_;
AX = X - X , 8x = x_ . - X = 6x - Ax .

Quantities related to the parameters, such as ua. u:. Aua. etc., which in the
geometrical context of the model plane are sets of coordinates or set- of
coordinate differences equivalent to tensors, are symbolized by u, uo, Au, etc.
The column vectors (of u elements) u and u0 denote respectively the adjusted
parameters and the initial values of parameters, while the column vector Au

follows from (1b) as

Au = u -~ u
o

Introducing also quantities in parentheses, in analogy to Ax and 5x we

have
(Ax) = (x) - X, (6x) = xQ - {(x) = 6x - (Ax)
Moreover, in analogy to Au we write

(Aau) = (u) - u, -

The intermediate values such as (u) and (x) follow from these equations as
(u)=uo+(Au) and (x)=xo+(Ax). Similar transcriptions apply also for the
relationships involving A(Aua) and A(Axr), such as presented in (15) and (19a),.
respectively, but it is unnecessary to write them explicitly since the pattern

explained above is general and straightforward.

We next transcribe the key formulas assoclated with the initial iteration

of Section 3.1. Equations (6), (8), and (9) correspond to
a* = AT g* A ., (D.1)
(au®) = AT g* 6x , (Au) = a (Au*) . (D.2a,b)
where a is the inverse of a*. Further, the faormulas (10a,b) become

g' = A a AT , g = g* g' g* . (D.3a,b)
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while the relations corresponding to (1la,b) are

g =eg-g" . g*" = g* - g% . (D.4a.b)

The adjustment role of the matrices g', g*', g", and g*" of dimensions (nxn) has
already been explained. Similar to the relationship between the matrices a and
a* of dimensions (uxu), the matrices g and g* of dimensions (nxn) are inverses

of each other.
Finally, we present the system (23a-c) in matrix notation:
» ‘T tT = T %
[(a%) - (6x*)" 0 - (6x*)" © (Au)] a(su) = (A) " (8x*) , (D.5a)

where

(a*) = (A)T g* (A) , (6x*) = g* (8x) . {(D.5b,c)

We call (D.5a) the modified normal equations, and the matrix on the left-hand
side, denoted {a*)}, the matrix of modified normal equations. For a repeated
application of (D.Sa-c), (Au) is updated through the algebraic addition of
A{Au). All the other quantities in parentheses are updated as well, while the
arrays {1 and 9 are treated as constant. Depending on the assumption about the
size of the residuals, (D.5a) can be simplified by leaving out the term with 0.
If both terms witi. @ or ® are left out, the resulting equation characterizes the
standard adjustment approach. The final updated values are denoted by overbars.
The varliance-covariance and the weight matrices of adjusted quantities are
represented by (D.1), (D.3a,b), and (D.4a,b), with all the symbols except g and

g* overbarred, and with a computed as the inverse of a*.
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